
Code reviewing reviewed: recommendations for improving
the efficiency and effectiveness of modern code reviews

Chun Fei Lung
Open University of the Netherlands

Heerlen, The Netherlands
cflung@acm.org

ABSTRACT
Code reviews are a way to maintain software quality. This
article summarises two studies on modern code reviews: The
first studies the effect of code review coverage and partici-
pation, and finds that the number of post-release defects is
negatively correlated with both coverage and participation.
The second studies the perceived usefulness of review com-
ments within Microsoft, and finds that reviewer experience,
and the size and composition of review requests affect the
useful comment density. These findings are discussed, and
a suggestion for future work is made.

Keywords
Code review, software economics, software evolution, soft-
ware maintenance, software quality

1. INTRODUCTION
Many software projects make use of version control systems
to keep track of changes. Changes to the source code are
typically made in feature branches and reviewed by peers.
Only when the changes are approved can they be integrated
into the release branch.

Reviews are a relatively simple way to maintain software
quality, and therefore make for an interesting research topic.
For instance, McIntosh et al. [4] have studied how such mod-
ern code reviews influence software quality in open source
projects, while Bosu et al. [3] have studied the perceived
usefulness of review comments within Microsoft.

The remainder of this article is structured as follows: Sec-
tion 2 describes the study conducted by McIntosh et al.,
while section 3 describes the study by Bosu et al. Section 4
discusses the results and poses a new research question.

2. PREVENTING POST-RELEASE DEFECTS
McIntosh et al. [4] hypothesise that modern code reviews
that are not comprehensive enough will negatively impact
software quality in the form of defects in the released version.
The authors aim to disprove this hypothesis by addressing
two research questions:

1. Is there a relationship between code review coverage
and post-release defects?

2. Is there a relationship between code review participa-
tion and post-release defects?

2.1 Method
McIntosh et al. answer the research questions by performing
a case study on three projects: Qt, VTK, and ITK. These
projects were chosen because they are large, successful open
source projects for which the majority of code changes were
systematically reviewed using the Gerrit code review tool1.

2.1.1 Data extraction
For each project the reviews are first extracted from Gerrit,
while code changes (“patches”) are extracted from the ver-
sion control system. Only changes that happen on or have
been merged into the release branch are considered for the
case study: these are more likely to be carefully reviewed.

Furthermore, the authors identified a set of common met-
rics that are known to affect defect-proneness of code. Such
metrics include the lines of code and cyclomatic complexity,
the amount of change that happens during a release, and
human factors such as developer expertise and code owner-
ship. These metrics are calculated for each proposed code
change, so that they can be controlled for during analysis.

Finally, it must be possible to determine how many post-
release defects have occurred. These are found by retrieving
all commits made within six months after a release, and
searching the commit messages for occurrences of keywords
such as “bug” or “fix”; such keywords typically appear in
commits that (are intended to) fix defects.

2.1.2 Model construction
The explanatory variables consist of two classes: metrics
related to the proportion of code covered by reviews and
metrics related to the proportion of code review participa-
tion. Multiple Linear Regression (mlr) models are used to
determine which of these metrics influence the occurrence of
post-release defects. A log transformation is applied on all
values to reduce the impact of outliers.

To keep the models simple, the number of metrics needs to
be minimised. A Spearman’s rank correlation is used to find
metrics that are strongly correlated with each other. Then,
a Variance Inflation Factor (vif) score is calculated for each
of the metrics. A vif score indicates the collinearity, i.e.
the extent to which a metric highly correlates with other
metrics. High-scoring metrics are removed from the model.

1https://www.gerritcodereview.com



2.1.3 Model analysis
Once the models have been built, the goodness of the fit is
evaluated using the Akaike Information Criterion (aic) and
Adjusted R2. These two methods take bias into account
that can occur due to the introduction of too many metrics.
χ2 tests are applied to each model’s values to determine
which metrics do not provide a significant contribution to
the model and thus can be safely dropped.

Finally, the impact of each code review coverage and par-
ticipation metric on the number of post-release defects is
studied by calculating the expected number of defects us-
ing the models. The resulting number of defects is always
rounded up to the nearest non-negative integer, as fractional
number of defects do not exist in practice.

2.2 Results
Both code review coverage and participation influence the
number of post-release defects.

2.2.1 Code review coverage
McIntosh et al. found that components with a higher review
coverage tend to have a lower number of post-release defects:
the impact of review coverage is statistically significant for
the Qt and ITK projects.

For instance, in the VTK project a code review coverage
below 0.29 will typically result in at least one post-release
defect, whereas in the Qt project a code review coverage
below 0.6 is already likely to yield one or more post-release
defects. A review coverage below 0.06 is expected to result in
two post-release defects. It should be noted that the models
never appear to expect more than two post-release defects.

The code review coverage does not always have a significant
impact on the number of post-release defects. This leads
McIntosh et al. to believe that there may be other factors
that influence software quality. For instance, there were also
components that had a review coverage of 1 – i.e. were fully
reviewed – but still showed post-release defects.

McIntosh et al. therefore conclude that code review coverage
is negatively associated with post-release defects2, but that
there are likely other factors as well.

2.2.2 Code review participation
Because the results for the first research question showed
that a relationship exists between the proportion of reviewed
changes and the number of expected post-release defects,
that is a variable that needs to be controlled for. McIntosh
et al. therefore choose to consider only those components
that have a code review coverage of 1. For the VTK dataset
this means that it is has become too small for statistical
analysis; it is therefore omitted from the analysis.

The authors look at three key metrics: 1) the proportion of
changes that have only been approved by the change author
themselves; 2) the proportion of changes that were approved
by other team members without any discussion whatsoever;
and 3) the proportion of changes that were likely hastily

2The article actually states that coverage is negatively asso-
ciated with software quality, but this is probably incorrect.

reviewed, i.e. there is little time between the creation of the
review request and the approval of the code change.

Most importantly, McIntosh et al. found that components
with a high level of review participation tend to have a lower
number of post-release defects. The opposite is true as well:
components with low code review participation tend to have
a higher number of post-release defects.

McIntosh et al. therefore conclude that that low code review
participation negatively impacts software quality.

2.3 Limitations
McIntosh et al. mention three threats to validity.

Firstly, the study only focusses on three open source sys-
tems. While Gerrit was used for all three systems, only a
part of the proposed changes were actually reviewed through
Gerrit. This can be a threat to the external validity.

Secondly, the constructed models assume that all defects are
equally severe, but this is clearly not the case. The authors
do note that many tools offer ways to assign severity levels to
issues: however, these assignments are rarely reliable. This
may threaten construct validity.

Finally, the internal validity may be threatened due to the
assumption that a review is rushed if a code change is ap-
proved in a relatively short time: it is still possible that
reviewers may postpone reviewing a code change, and rush
the review at a later time.

2.4 Conclusions
McIntosh et al. conclude that code review coverage possi-
bly has a positive influence on software quality, while code
review participation likely has a positive influence on soft-
ware quality. Overall, they believe that the findings provide
evidence that code review policies should ensure a sufficient
level of code review coverage and participation.

3. PERCEIVED USEFULNESS OF REVIEWS
Whereas McIntosh et al. focussed on post-release defects,
Bosu et al. [3] studied how change authors perceive useful-
ness of review comments on their proposed code changes.

Despite the fact that modern code reviews are generally less
rigorous than formal code inspections of yore, developers still
spend almost an entire day every week reviewing code writ-
ten by their peers [2]. Bosu et al. therefore aim to “identify
the factors that impact the usefulness of code reviews, and
to derive recommendations for effectiveness improvements”
[3]. This goal is decomposed into three research questions:

1. What are the characteristics of code review comments
that are perceived as useful by change authors?

2. What methods and features are needed to automati-
cally classify review comments into useful and not use-
ful?

3. What factors have a relationship with the density of
useful code review comments?



A three-phase study was conducted to answer these ques-
tions. Each phase is described in further detail below.

3.1 How change authors perceive usefulness
To discover which characteristics make review comments
useful for developers, Bosu et al. first conducted an ex-
ploratory study, which consists of semi-structured interviews.

Participants were shown a series of comments that were
made about one of their proposed changes, and asked to
classify each comment as either“Useful”, “Somewhat useful”,
or “Not useful” and explain their reasoning for the classifica-
tion. Furthermore, the participant was asked to categorise
the comment type, e.g. a request for documentation, report
of a defect, or false positive.

Prior to the exploratory study, a number of pilot interviews
were held with other developers to assess whether questions
were clear and answerable within reasonable time. These
pilot interviews were solely intended to improve the actual
study: the results were not included in the analysis.

3.1.1 Results
Change authors generally classified comments that point out
defects or edge cases where the implementation may not
behave correctly as “useful”. In the case of junior change
authors, advice by senior reviewers on designs, which apis
to use, team conventions, and so on was also considered to
be useful.

On the other hand, comments about issues that do not affect
the functionality of the current version are merely found to
be “somewhat useful”. Examples of such issues include sug-
gestions for alternative implementation methods or typical
“nit-picking issues”, such as indentation, naming, and style.

Finally, comments that falsely point out issues, point out
issues which are not part of the reviewed change, contain
compliments, or are questions to gain a better understanding
of the implementation, are classified as “not useful”.

3.1.2 Discussion
The classifications made by the change authors largely sup-
port findings from existing studies that modern code reviews
are used to prevent defects and increase maintainability.
However, knowledge dissemination does not seem to be val-
ued as much at Microsoft.

Furthermore, the findings show that useful comments later
often result in further code changes near the line where the
comment was made, presumably in response to feedback
given in the review.

Finally, Bosu et al. note that the status of a comment is a
reasonable indication of its perceived usefulness: “Resolved”
comments are usually found useful, whereas comments that
are marked with “Won’t fix” are often not useful.

3.2 Classification of comment usefulness
In the second phase Bosu et al. construct an automated clas-
sifier that retroactively distinguishes useful from not useful
comments based on evidence found within review comments

and any code changes that were likely made because of those
review comments. This is a multi-step process.

3.2.1 Manual classification
Based on insights gained from the exploratory study with
change authors, Bosu et al. manually classified an additional
844 comments from five projects within Microsoft : Azure,
Bing, Exchange, Office, and Visual Studio. These projects
all use the same in-house code review tool, CodeFlow, and
were selected such that they differ in scope and type. Com-
ments are now only classified as “Useful” and “Not useful”,
as “Somewhat useful” comments can still be considered as
“Useful”. This is presumably done to simplify classification.

The manual classification work was divided among the au-
thors. However, 100 comments were randomly selected for
classification by all authors. This allowed for calculation of
the inter-rater reliability of these classifications using Fleiss’
Kappa. The result was a κ value of 0.947, which indicates
that manual classifications were done consistently among the
authors and are therefore valid.

The comments classified by change authors and Bosu et al.
are combined into an oracle that is later used to train the
automated classifier.

3.2.2 Attributes of useful comments
Based on insights gained during the interviews with change
authors and the manual classification, Bosu et al. identified
a number of comment attributes which often only co-occur
with useful or non-useful comments. Examples include the
number of review participants, the number of comments,
whether the change author replied to a comment, whether
the comment resulted in a code change, and whether the
comment has a positive or negative tone.

3.2.3 Attribute calculation
To calculate the effect that each of the identified attributes
has, Bosu et al. determine for each comment whether it is a
change trigger, which is when a code change occurs after the
review and before approval of the patch, in close proximity
to the line where the comment was made.

A classifier based on the multi-variate Bernoulli document
model is used to keep track of keywords within review com-
ments. To prevent the list of keywords from becoming too
large and uninformative, review comments are first prepro-
cessed by removing whitespace, punctuation, and numbers,
lowercasing, and stemming. Furthermore, only keywords
that appear in at least ten comments are considered.

The sentiment of review comments was automatically cal-
culated using the Microsoft Research Statistical Parsing and
Linguistic Analysis Toolkit3 (msr-Splat) service.

3.2.4 Classification process and validation
A classification tree algorithm is used to build a decision
tree model for comment classification.

3https://www.microsoft.com/en-
us/research/project/msr-splat/



The model is validated in two ways: Firstly, using 10-fold
cross-validation, which is repeated 100 times. Secondly, the
authors asked 5 developers to manually classify review com-
ments that they had recently received on their proposed
changes, and compared these classifications with those made
by the model.

3.2.5 Results
Because evaluation of the automated classifier is not the pri-
mary goal of the study, Bosu et al. do not provide an exhaus-
tive overview of the results. Instead they merely present a
few interesting findings about the impact that certain review
comment attributes have on their perceived usefulness.

Comments that trigger changes are likely to be found useful.
The same is true for comment threads where the author does
not respond – as this implies agreement with the commenter
– unless the author explicitly responds using keywords such
as “done” or “fixed”. Comment threads with only one com-
ment or participant are also more likely to be useful, as are
comments which are change requests and comments which
have a “Resolved” or “Closed” status. Finally, comments
with a neutral or somewhat – but not extremely – negative
tones are generally found to be useful as well.

The 100 10-fold cross-validations showed that the model has
a mean precision rate of 89.1%, a mean recall of 85.1%, and
a mean classification error rate of 16.6%. When compared
to the manual classifications made by developers, the model
has a 86.7% precision and 93.8% recall.

3.3 Empirical study of comment usefulness
Bosu et al. look at two factors that may influence the per-
ceived usefulness of review comments: characteristics of re-
viewers and characteristics of reviewed changes. They exam-
ine the relation between these two factors and the comment
usefulness density, which is derived from the classifications
made by the decision tree model.

3.3.1 Factor 1: Reviewers
Reviewers who have made at least one modification to source
code files they are commenting on, tend to have a higher pro-
portion of useful review comments. Curiously enough, the
total amount of experience with a source code file, i.e. the
number of times the reviewer has previously made modifi-
cations to it, barely affects the proportion of useful review
comments.

Similar results are found for reviewers who have reviewed
a source code file they are commenting on at least once,
although in this case Bosu et al. report an increase in the
proportion of useful review comments of up to 80% when a
reviewer has reviewed the same source code file around five
times4.

In practice, this means that developers at Microsoft have low
proportions of useful comments in their first three months,
as they are still learning the system’s design and constraints,

4It should be noted that within Microsoft developers are not
allowed to change code before they have reviewed it. This
may have skewed the results somewhat.

and show a gradual improvement up to the end of the first
year, when it plateaus.

Overall, Bosu et al. conclude that developers who have ex-
perience changing or reviewing a software artefact generally
provide more useful comments. Up and downs in useful
comment density may still occur periodically due to circum-
stances unrelated to the reviewing process.

Another interesting observation is that while most review
comments (76%) are made by reviewers from the same team
as the change author, cross-team reviewers have a slightly
higher useful comment density. The difference is very small
however.

3.3.2 Factor 2: Reviewed changes
As the number of source code files included in a review in-
creases, the useful comment density drops, as reviewers may
overlook changes or spend more time asking questions about
the implementation.

The type of files appears to influence the density as well:
source code files appear to have a high useful comment den-
sity, whereas build and configuration files have a low pro-
portion of useful comments.

3.4 Limitations
All studied projects were from the same organisation and
reviewed using the same code review tool. Bosu et al. argue
that this is not a major issue, as the studied projects are
for different types of software and prior research shows that
open source projects and commercial projects use similar
informal review practices [3, 5].

Another factor that may have influenced the results is the
quality of the constructed model: even though the preci-
sion and recall are high, the mean classification error rate is
still around 15%. The authors do not believe that the error
is systematic, i.e. consistently causes a skewing of results
towards a particular outcome.

3.5 Conclusions
Based on the findings from the empirical study, Bosu et al.
make the following three recommendations.

Firstly, experienced reviewers contribute much more use-
ful reviews than inexperienced reviewers. Thus the latter
should be involved as early as possible to let them gain that
experience. Nevertheless, in order to maintain a sufficient
amount of useful comments in the short term, at least one
experienced reviewer should be involved.

Secondly, change authors should commit small and incre-
mental changesets whenever possible, so as to improve the
ratio of useful comments. Furthermore, care must be taken
when non-code files are committed: change authors should
help reviewers by providing additional explanation for the
changes in such files.

Finally, if a component attracts a disproportionate amount
of comments that are not useful (e.g. false positives, ques-
tions about the implementation), actions should be taken to
make the implementation clearer.



4. DISCUSSION
Both studies are empirical in nature and provide insights
into the value of modern code reviews from the perspective
of product owners and software developers.

4.1 Similarities and differences
In essence, the study by McIntosh et al. on the impact of
code review coverage and participation on the number of
post-release defects is about optimising for the effectiveness
of modern code reviews. In order to gain and maintain a
high software quality level and prevent post-release defects
as much as possible, they argue that all code changes must
be thoroughly reviewed and discussed before integration into
the main release branch.

In contrast, the study by Bosu et al. on what makes code
review comments (perceived as) useful is about optimising
for efficiency of modern code reviews. In the short term,
this may lead to a streamlining of the software development
process, as less man-hours are wasted on processing review
comments that are not actually useful.

This sidesteps the impact on software quality however: for
instance, the software developers interviewed by Bosu et al.
did not find questions about the implementation for the pur-
pose of knowledge dissemination to be useful, even though
this is also one of the purposes of code review [1], as it may
allow them to produce higher-quality code in the future. In
the long term, a sole focus on achieving a high useful com-
ment density may therefore have undesirable consequences.

Nonetheless, in business environments, practitioners such as
software developers and software development managers will
likely want to consider both the effectiveness and efficiency
of their code review processes: ideally a sufficient number of
experienced software developers should always be involved
in reviews, and be given enough time to (mostly) comment
on issues that can be directly resolved by the change author.

4.2 Limitations
The discussed studies have a few limitations that may have
affected the findings and conclusions.

4.2.1 Small, non-representative samples
The projects studied by McIntosh et al. are primarily free
and open source projects, whereas those studied by Bosu et
al. are commercial and closed-source. In both cases, the
projects that ended up being studied were chosen because
they were easier to analyse.

A study by Rigby and Bird [5] suggests that many similar-
ities exist in the code review processes used in open source
and commercial projects. Bosu et al. argue that this miti-
gates the problem.

However, differences are likely to exist in other areas of the
software development process. This can make it harder to
generalise the findings by McIntosh et al. to commercial,
closed-source projects with tighter time and budget con-
straints or the findings by Bosu et al. to open-source projects
where deadlines are less strict and reviewers are “free” and
work on the software voluntarily.

4.2.2 A good outcome – for whom?
McIntosh et al. have chosen to look primarily at the number
of post-release defects as a measure of how effective review
comments are: however, defect-free software might not al-
ways be the most important goal.

A similar observation can be made about the study by Bosu
et al., who have chosen to classify a review comment as
useful if the change author thinks it is useful. They claim
that this is a sensible choice, because the change author is
the only one who can accurately judge whether they found
the comment to be useful.

However, it can also be argued that this is a somewhat lim-
ited view of “usefulness”. This is especially apparent when
a change author has to answer questions about their im-
plementation, which is an action that indeed provides little
benefit to the change author, but may be very beneficial for
the development team and project as a whole.

4.3 Future work
In the latter case, it is clear that Bosu et al. have not yet
taken into account the positive externalities that may be as-
sociated with knowledge dissemination via replies on review
comments.

A follow-up study could therefore be conducted that answers
the question “how do questions posed in review comments
about the design or implementation of a component affect
the software development process in subsequent development
phases?”.

It is possible that the presence of such questions may be
correlated with a lower number of post-release defects or a
shorter development time later, e.g. in subsequent sprints
when the Scrum software process is used.

5. REFERENCES
[1] A. Bacchelli and C. Bird. Expectations, outcomes, and

challenges of modern code review. In Proceedings of the
2013 international conference on software engineering,
pages 712–721. IEEE Press, 2013.

[2] A. Bosu and J. C. Carver. Impact of peer code review
on peer impression formation: A survey. In Empirical
Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on, pages
133–142. IEEE, 2013.

[3] A. Bosu, M. Greiler, and C. Bird. Characteristics of
useful code reviews: An empirical study at Microsoft.
In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories (MSR), pages 146–156.
IEEE, 2015.

[4] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan.
The impact of code review coverage and code review
participation on software quality: A case study of the
Qt, VTK, and ITK projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories,
pages 192–201. ACM, 2014.

[5] P. C. Rigby and C. Bird. Convergent contemporary
software peer review practices. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software
Engineering, pages 202–212. ACM, 2013.


